Lecture 3
2023/2024
Microwave Devices and Circuits
for Radiocommunications

2023/2024

2C/1L, MDCR

- Attendance at minimum 7 sessions (course or laboratory)
- Lectures- associate professor Radu Damian
- Tuesday 16-18, Online, P8
- E-50\% final grade
- problems + (2p atten. lect.) + (3 tests) + (bonus activity)
- first test L1: 20-27.02.2024 (t2 and t3 not announced, lecture)
" 3att.=+0.5p
- all materials/equipments authorized

2023/2024

- Laboratory - associate professor Radu Damian
- Tuesday 08-12, II.13 / (08:10)
- L-25\% final grade
- ADS, 4 sessions
- Attendance + personal results
- P - 25\% final grade
- ADS, 3 sessions (-1? 20.02.2024)
- personal homework

Materials

- http://rf-opto.etti.tuiasi.ro

Microwave Devices and Circuits for Radiocommunications (English)
Course: MDCR (2017-2018)
Course Coordinator: Assoc.P. Dr. Radu-Florin Damian
Code: EDOS412T
Discipline Type: DOS; Alternative, Specialty
Credits: 4
Enroilment Year: 4, Sem. 7
Activities
Course: Instructor: Assoc.P. Dr. Radu-Florin Damian, 2 Hours/Week, Specialization Section, Timetable: Laboratory: Instructor: Assoc.P. Dr. Radu-Florin Damian, 1 Hours/Week, Group, Timetable:

Evaluation

Type: Examen
A: 50\%, (Test/Colloquium)
B: 25%, (Seminary/Laboratory/Project Activity)
D: 25%, (Homework/Specialty papers)
Grades
Aggregate Results
Attendance
Course
Laboratory
Lists
Bonus-uri acumulate (final).
Studenti care nu pot intra in examen
Materials
Course Slides
MDCR Lecture 1 (pdf, 5.43 MB , en, 8 m)
MDCR Lecture 2 (pdf, $3.67 \mathrm{MB}, \mathrm{en}, \neq$)
MDCR Lecture 3 (pdf, $4.76 \mathrm{MB}, \mathrm{en}$, \#\#)
MDCR Lecture 4 (pdf, 5.58 MB , en,

Online Exams

In order to participate at online exams you must get ready following

Site

Microwave and Optoelectronics Laboratory is.
We are enlisted in the Telecommunications Department of the Electronics, Telecommunication and Information Technology Faculty (ETTI) from the "Gh. Asachi" Technical University (TUIASI) in Iasi, Romania We currently cover inside ETTI the fields related to:

- Microwave Circuits and Devices
- Microwave Citoelectronics
- Information Technology

Courses

Nr.	Course	Shortaut	Code	Type	Semester	Credits	Weekdy	Examination Link
1	Microwave Devices and Circuits for Radiocommunications	DCMR	DOS412T	DOS	7	4	OP,1L,0S,2C	Exam
2	Monolithic Microwave Integrated Carcuits	CIMM	RD.IA. 207	DOMS	11	6	1.5L, OS, 2C, OP	Exam
3	Advanced Techniques in the Design of the Radio-communications Systems	TAPSR	RD.IA. 103	DIMS	9	6	1.5P,0L, OS, 2C	Exam
4	Optical Communications	co	D05409T	DOS	7	5	OP, 1L, OS, 3C	Colloquiu
5	Optical Communications	OC	EDOS409T	DOS	7	5	OP,1L,05,3C	Exam
6	Satellite Communications	cs	RC.IA. 104	DIMS	9	6	0L,0S,2C,1.5P	Exam
7	Applied Informatics 1	IA1	DOF135	DOF	1	4	OP, 1L, 0S,2C	Verificatic
8	Applied Informatics 1	AI1	EDOF135	DOF	1	4	OP, 1L, $05,2 \mathrm{C}$	Verificatic
9	Databases, Web Programming and Interfacing	DWPI	ITT.IA. 601	DIS	11	5	1P,1L,0.25s,1C	Verificatic
10	Web Applications Design	PAW	RC.IA. 108	DIMS	10	5	1L,0S,1.5C,1P	Exam
11	Optoelectronics	OPTO	DID405M	DID	8	4	OP,1L, OS, 2C	Colloquiu
12	Microwave Devices and Circuits for Radiocommunications (English)	MDCR	EDos412T	dos	8	4	OP,1L, OS,2C	Exam

Materials

- RF-OPTO
- http://rf-opto.etti.tuiasi.ro
- David Pozar, "Microwave Engineering", Wiley; 4th edition, 2011
- 1 exam problem \leftarrow Pozar
- Photos
- sent by email/online exam > Week4-Week6
- used at lectures/laboratory

Online

- access to online exams requires the password received by email

Password

received by email

Important message from RF-OPTO

Inbox x

Radu-Florin Damian
to me, POPESCU -
$\overline{\text { }}_{\text {A }}$ Romanian * $>$ English * Translate message

Laboratorul de Microunde si Optoelectronica
Facultatea de Electronica, Telecomunicatii si Tehnologia Informatiei
Universitatea Tehnica "Gh. Asachi" las

In atentia: POPESCU GOPO ION
Parola pentru a accesa examenele pe server-ul rf-opto este Parola:

Identificati-va pe server, cu parola, cat mai rapid, pentru confirmare
Memorati acest mesaj intr-un loc sigur, pentru utilizare ulterioara

Attention: POPESCU GOPO ION
The password to access the exams on the rf-opto server is Password:

Login to the server, with this password, as soon as possible, for confirmation
Save this message in a safe place for later use
:
Subject
Important message from RF-OPTO
$\infty \quad$ Correspondents

Validation of IviUCR exam trom UZ/05/2020

From Me rdamian@etti.tuiasi.ro
S Aect Important message from RF-OPTO

Cc Me rdamian@etti.tuiasi.ro *

Laboratorul de Microunde si Optoelectronica
Facultatea de Electronica, Telecomunicatii si Tehnologia Informatiei
Universitatea Tehnica "Gh. Asachi" lasi

In atentia: POPESCU GOPO ION

Parola pentru a accesa examenele pe server-ul rf-opto este Parola:

Identificati-va pe server, cu parola, cat mai rapid, pentru confirmare.

Memorati acest mesaj intr-un loc sigur, pentru utilizare ulterioara

Attention: POPESCU GOPO ION
The password to access the exams on the rf-opto server is Password:

Login to the server, with this password, as soon as possible, for confirmation.
Save this message in a safe place for later use

Adrese email

- Sefii de grupa
- lista cu adrese de email utilizate de toti studentii
" poate fi @student.etti.tuiasi.ro (@gmail @yahoo etc.)
" rdamian@etti.tuiasi.ro

Online exam manual

- The online exam app used for:
=-lectures (attendance)
- laboratory
- project
-examinations

Materials

Other data

Manual examen on-line (pdf, 2.65 yB, ro, II) Simulare Examen (video) (mp4, 65 12 MB, ro, II)

Microwave Devices and Circuits (Enqlis

Examen online

- always against a timetable
- long period (lecture attendance/laboratory results)
"-short period (tests: 15min, exam: 2h)

Announcement

This is a "fake" exam, introduced to familiarize you with the server interface and to perform the necessary actions during an exam: thesis scan, selfie, use email for co

Server Time

All exame aro hased on the server's time zone (it may be different from local time). For reference time on the server is now:

Online results submission

many numerical values／files

Simam	dis					bemer																
．		${ }_{\text {che }}^{\text {a }}$						15588	2	15.35	18091	3329	115.19	79.9	${ }^{37}$							
		${ }_{\text {cose }}$			$\frac{85 .}{\text { a }}$		．97	1335	3.45	3379	5556	2212	1	。	。		，	。				
					$\frac{.}{\text { asid．}}$					。	。	\bigcirc		－	－	－		。				
							so	50	50	50	50	50	50									
		$\frac{58}{550}$	（emem		$\frac{85 .}{\frac{85}{564}}$	$\frac{85}{\frac{45}{5} 5}$	18 18022	150.5	1728	1375	92.12	12.107	124．48	9.36	36．							
			既			$\frac{85}{\frac{85}{565} \text { ．}}$	1222	80，	2092	120.85	135.1	1837	107.6									
											2271	180.17										
	$\frac{8.800}{5080}$						15084	1225	30.9	${ }^{323}$	5436	1983	22.85	6.1								
	$\frac{855.55}{2050}$					$\frac{\frac{85}{555}}{\frac{5}{355}}$						1237		269705	${ }^{36.16}$							

Online results submission

- many numerical values

Online results submission

Grade = Quality of the work +

 + Quality of the submission
Computing Loss/Gain in circuits

$$
\begin{aligned}
& \text { Loss }=\frac{P_{\text {out }}}{P_{\text {in }}}<1 \quad \text { Loss }[\mathrm{dB}]=10 \cdot \log _{10}\left(\frac{P_{\text {out }}}{P_{\text {in }}}\right)<0 \\
& \text { Loss/Attenuation }[\mathrm{dB}]=[-] 10 \cdot \log _{10}\left(\frac{P_{\text {out }}}{P_{\text {in }}}\right) \\
& \text { Gain }=\frac{P_{\text {out }}}{P_{\text {in }}}>1 \\
& \text { Gain }[\mathrm{dB}]=10 \cdot \log _{10}\left(\frac{P_{\text {out }}}{P_{\text {in }}}\right)>0
\end{aligned}
$$

$$
\text { Attenuation }[\mathrm{dB} / \mathrm{km}]=\frac{\operatorname{Loss}[\mathrm{dB}]}{\text { Length }[\mathrm{km}]}
$$

Computing Loss/Gain in circuits

Loss/Attenuation $\rightarrow P_{\text {out }}<P_{\text {in }} \rightarrow P_{\text {out }}[\mathrm{dBm}]<P_{\text {in }}[\mathrm{dBm}]$
$P_{\text {out }}[\mathrm{dBm}]=P_{\text {in }}[\mathrm{dBm}]-$ Loss $/$ Attenuation $[\mathrm{dB}]$

Gain/Amplification $\rightarrow P_{\text {out }}>P_{\text {in }} \rightarrow P_{\text {out }}[\mathrm{dBm}]>P_{\text {in }}[\mathrm{dBm}]$
$P_{\text {out }}[\mathrm{dBm}]=P_{\text {in }}[\mathrm{dBm}]+$ Gain/Amplification $[\mathrm{dB}]$

Exam: Logarithmic scales

Introduction

Microwaves

Frequency（Hz）

$\begin{gathered} 3 \times 10 \\ \hline \end{gathered}$		$\stackrel{3}{3 \times 10^{6}}$	3×10^{7} 1	$0^{7} \quad 3 \times 10^{8}$	3×10^{9} 1	3×10^{10}	3×10^{11}	3×10^{12} 1	3×10^{13} 1	3×10^{14}
			T	1.91	Microwaves		1		（1）	
			1	｜			，			
			1	$>1 \pm 1$			｜			
	－			－1			｜			
				生1雨1			।			
				『1唇1			I			
	\sum						I			
	$1<$	I	1	｜$\sum_{1} 1$			I			
		1	1	，			I			
		1	${ }_{1}$	－	1	1	1	1	－	
10^{3}		10^{2}	10	1	10^{-1}	10^{-2}	10^{-3}	10^{-4}	10^{-5}	10^{-6}
					Wavel	ngth（m）				

－typically
－ $\mathrm{f} \approx 1 \div 3 \mathrm{GHz}-300 \mathrm{GHz}$
－$\lambda \approx 1 \mathrm{~mm}-10 \mathrm{~cm}$

Electrical Length

- Behavior (and description) of any circuit depends on his electrical length at the particular frequency of interest
- E $\approx 0 \rightarrow$ Kirchhoff
- E>0 \rightarrow wave propagation

$$
E=\beta \cdot l=\frac{2 \pi}{\lambda} \cdot l=2 \pi \cdot\left(\frac{l}{\lambda}\right)
$$

Maxwell's Equations

$\nabla \times E=-\frac{\partial B}{\partial t}$
$\nabla \times H=\frac{\partial D}{\partial t}+J$
$\nabla \cdot D=\rho$
$\nabla \cdot B=0$
$\nabla \cdot J=-\frac{\partial \rho}{\partial t}$

Constitutive equations

$$
\begin{aligned}
& D=\varepsilon \cdot E \\
& B=\mu \cdot H \\
& J=\sigma \cdot E
\end{aligned}
$$

- Vacuum

$$
\begin{aligned}
& \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m} \\
& \varepsilon_{0}=8,854 \times 10^{-12} \mathrm{~F} / \mathrm{m}
\end{aligned}
$$

$$
c_{0}=\frac{1}{\sqrt{\varepsilon_{0} \cdot \mu_{0}}}=2,99790 \cdot 10^{8} \mathrm{~m} / \mathrm{s}
$$

Wave equations

- Helmoltz equations or Wave equations

Medium void of free electric charges

$$
\begin{aligned}
& \nabla^{2} E-\gamma^{2} E=0 \\
& \nabla^{2} H-\gamma^{2} H=0 \\
& \gamma^{2}=-\omega^{2} \varepsilon \mu+j \omega \mu \sigma
\end{aligned}
$$

γ - propagation constant (known also as phase constant or wave number)

Solutions of the wave equations

Circular Polarization

Electric field only in Oy direction, \leftarrow through judicious choice wave traveling after Oz direction \leftarrow of the coordinate system

$$
\begin{aligned}
& E_{y}=E_{+} e^{-\gamma \cdot z}+E_{-} e^{\gamma \cdot z} \\
& \gamma=\sqrt{-\omega^{2} \varepsilon \mu+j \omega \mu \sigma}=\alpha+j \cdot \beta
\end{aligned}
$$

If we have only the positive direction wave $\mathrm{E}_{+}=>\mathrm{A}$

$$
E_{y}=A e^{-(\alpha+j \cdot \beta) \cdot z}
$$

Harmonic Field

TEM transmission lines

Course Topics

- Transmission lines
- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
-Oscillators and mixers-?

Transmission line

TEM wave propagation, at least two conductors
$\xrightarrow{\stackrel{I(z, t)}{\longrightarrow}} \begin{array}{r} \\ V(z, t)\end{array}$

(a)

(b)

Transmission line equivalent model

- TEM wave propagation, at least two conductors

- distributed (line) parameters R, L, G, C (eg. Ω / m)

Telegrapher's equations

- time domain

$$
\begin{array}{ll}
\frac{\partial v(z, t)}{\partial z}=-R \cdot i(z, t)-L \cdot \frac{\partial i(z, t)}{\partial t} & \text { K॥ } \\
\frac{\partial i(z, t)}{\partial z}=-G \cdot v(z, t)-C \cdot \frac{\partial v(z, t)}{\partial t} & \mathrm{~K} \text { । }
\end{array}
$$

- armonic signals (frequency domain)

$$
\begin{array}{ll}
\frac{d V(z)}{d z}=-(R+j \cdot \omega \cdot L) \cdot I(z) \\
\frac{d I(z)}{d z} & =-(G+j \cdot \omega \cdot C) \cdot V(z)
\end{array} \quad / \frac{d}{d z}(\ldots)
$$

Solving T's E

$$
\begin{aligned}
& \frac{d^{2} V(z)}{d z^{2}}-\gamma^{2} \cdot V(z)=0 \\
& \frac{d^{2} I(z)}{d z^{2}}-\gamma^{2} \cdot I(z)=0 \quad \gamma=\alpha+j \cdot \beta= \\
& \nabla^{2} E-\gamma^{2} E=0 \\
& \nabla^{2} H-\gamma^{2} H=0 \quad E_{y}=E_{+} e^{-\gamma \cdot z}+E_{-} e^{\gamma \cdot z} \\
& \gamma^{2}=-\omega^{2} \varepsilon \mu+j \omega \mu \sigma
\end{aligned}
$$

Solutions

$$
\begin{aligned}
& V(z)=V_{0}^{+} e^{-\gamma \cdot z}+V_{0}^{-} e^{\gamma \cdot z} \\
& I(z)=I_{0}^{+} e^{-\gamma \cdot z}+I_{0}^{-} e^{\gamma \cdot z} \\
& V(z)=V_{0}^{+} e^{-\gamma \cdot z}+V_{0}^{-} e^{\gamma \cdot z} \\
& \frac{d V(z)}{d z}=-(R+j \cdot \omega \cdot L) \cdot I(z) \\
& Z_{0} \equiv \frac{R+j \cdot \omega \cdot L}{\gamma}=\sqrt{\frac{R+j \cdot \omega \cdot L}{G+j \cdot \omega \cdot C}} \\
& \frac{V_{0}^{+}}{I_{0}^{+}}=Z_{0}=-\frac{V_{0}^{-}}{I_{0}^{-}} \\
& \gamma=\alpha+j \cdot \beta=\sqrt{(R+j \cdot \omega \cdot L) \cdot(G+j \cdot \omega \cdot C)} \\
& I(z)=\frac{\gamma}{R+j \cdot \omega \cdot L}\left(V_{0}^{+} e^{-\gamma \cdot z}-V_{0}^{-} e^{\gamma \cdot z}\right) \\
& \text { - Characteristic } \\
& \text { impedance of the line } \\
& \lambda=\frac{2 \pi}{\beta} \quad v_{f}=\frac{\omega}{\beta}=\lambda \cdot f
\end{aligned}
$$

The lossless line

- Lossless: $\mathrm{R}=\mathrm{G}=0$

$$
\begin{aligned}
& \gamma=\alpha+j \cdot \beta=\sqrt{(R+j \cdot \omega \cdot L) \cdot(G+j \cdot \omega \cdot C)}=j \cdot \omega \cdot \sqrt{L \cdot C} \\
& \alpha=0 \quad ; \quad \beta=\omega \cdot \sqrt{L \cdot C} \\
& Z_{0}=\sqrt{\frac{R+j \cdot \omega \cdot L}{G+j \cdot \omega \cdot C}}=\sqrt{\frac{L}{C} \quad-Z_{\mathrm{o}} \text { is real }} \\
& V(z)=V_{0}^{+} e^{-j \cdot \beta \cdot z}+V_{0}^{-} e^{j \cdot \beta \cdot z} \quad \lambda=\frac{2 \pi}{\omega \cdot \sqrt{L C}} \quad v_{f}=\frac{1}{\sqrt{L C}} \\
& I(z)=\frac{V_{0}^{+}}{Z_{0}} e^{-j \cdot \beta \cdot z}-\frac{V_{0}^{-}}{Z_{0}} e^{j \cdot \beta \cdot z} \quad
\end{aligned}
$$

The lossless line

$$
\begin{aligned}
& V(z)=V_{0}^{+} e^{-j \cdot \beta \cdot z}+V_{0}^{-} e^{j \cdot \beta \cdot z} \\
& I(z)=\frac{V_{0}^{+}}{Z_{0}} e^{-j \cdot \beta \cdot z}-\frac{V_{0}^{-}}{Z_{0}} e^{j \cdot \beta \cdot z} \\
& Z_{L}=\frac{V(0)}{I(0)} \quad Z_{L}=\frac{V_{0}^{+}+V_{0}^{-}}{V_{0}^{+}-V_{0}^{-}} \cdot Z_{0}
\end{aligned}
$$

- voltage reflection coefficient
$\Gamma=\frac{V_{0}^{-}}{V_{0}^{+}}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}$
- Z_{o} real

The lossless line

- voltage reflection coefficient seen at the input of the line

$$
V(z)=V_{0}^{+} e^{-j \cdot \beta \cdot z}+V_{0}^{-} e^{j \cdot \beta \cdot z}
$$

$$
\begin{aligned}
& \Gamma=\Gamma(z)=\frac{V_{0}^{-}(z)}{V_{0}^{+}(z)} \\
& V(0)=V_{0}^{+}+V_{0}^{-} \quad \Gamma(0)=\Gamma_{L}=\frac{V_{0}^{-}}{V_{0}^{+}} \\
& V(-l)=V_{0}^{+} e^{j \cdot \beta \cdot l}+V_{0}^{-} e^{-j ; \cdot l} \\
& \Gamma(-l)=\Gamma_{I N}=\frac{V_{0}^{-} \cdot e^{-j \cdot \beta \cdot l}}{V_{0}^{+} \cdot e^{j \cdot \beta \cdot l}}=\Gamma(0) \cdot e^{-2 j \cdot \beta \cdot l} \\
& |\Gamma(-l)|=|\Gamma(0)| \cdot\left|e^{-2 j \cdot \beta_{l}}\right|=|\Gamma(0)| \\
& \Gamma_{I N}=\Gamma_{L} \cdot e^{-2 j ; \cdot M} \quad \quad \Gamma_{I N}\left|=\left|\Gamma_{L}\right|\right.
\end{aligned}
$$

The lossless line

$$
V(z)=V_{0}^{+} \cdot\left(e^{-j \cdot \beta \cdot z}+\Gamma \cdot e^{j \cdot \beta \cdot z}\right) \quad I(z)=\frac{V_{0}^{+}}{Z_{0}} \cdot\left(e^{-j \cdot \beta \cdot z}-\Gamma \cdot e^{j \cdot \beta \cdot z}\right)
$$

- time-average Power flow along the line
$P_{\text {avg }}=\frac{1}{2} \cdot \operatorname{Re}\left\{V(z) \cdot I(z)^{*}\right\}=\frac{1}{2} \cdot \frac{\left|V_{0}^{+}\right|^{2}}{Z_{0}} \cdot \underbrace{\operatorname{Re}\left\{1-\left.\Gamma^{*}\right|^{*} \cdot\left(1-|\Gamma|^{2}\right)\right.}_{\left(z-z^{*}\right)=\operatorname{Im}} \underbrace{e^{-2 j \cdot \beta \cdot z}+\Gamma \cdot e^{2 j \cdot \beta \cdot z}}-|\Gamma|^{2}\}$
- Total power delivered to the load = Incident power - "Reflected" power
- Return "Loss" [dB] \quad RL $=-20 \cdot \log |\Gamma| \quad[\mathrm{dB}]$

The lossless line

$P_{\text {avg }}=\frac{1}{2} \cdot \frac{\left|V_{0}^{+}\right|^{2}}{Z_{0}} \cdot\left(1-|\Gamma|^{2}\right)$

- Average power flow is constant along the line
- (no $\mathrm{P}_{\mathrm{avg}}(\mathrm{z})$)
- can be measured
- We can use the power to characterize the amplitude of a signal
- a very "energetic" (basic physics) point of view
- more power = "more" signal

Polar representation

Euler's formula
$e^{j \cdot x}=\cos x+j \cdot \sin x ; \forall x \in R$

- Polar representation

$$
\begin{aligned}
& z=a+j \cdot b=|z| \cdot e^{j \cdot \varphi} \\
& z=a+j \cdot b=|z| \cdot(\cos \varphi+j \cdot \sin \varphi)
\end{aligned}
$$

$$
z^{n}=\left(|z| \cdot e^{j \cdot \varphi}\right)^{n}=|z|^{n} \cdot e^{j \cdot n \cdot \varphi}=|z|^{n} \cdot[\cos (n \cdot \varphi)+j \cdot \sin (n \cdot \varphi)]
$$

$$
\geqslant \sqrt{z}=\left(|z| \cdot e^{j \cdot \varphi}\right)^{1 / 2}=\sqrt{|z|} \cdot e^{j \cdot \frac{\varphi}{2}}=\sqrt{|z|} \cdot\left(\cos \frac{\varphi}{2}+j \cdot \sin \frac{\varphi}{2}\right)
$$

$$
z \cdot w=|z| \cdot e^{j \cdot \varphi} \cdot|w| \cdot e^{j \cdot \theta}=|z| \cdot|w| \cdot e^{j \cdot(\varphi+\theta)}=|z| \cdot|w| \cdot[\cos (\varphi+\theta)+j \cdot \sin (\varphi+\theta)]
$$

$$
z / w=\frac{|z| \cdot e^{j \cdot \varphi}}{|w| \cdot e^{j \cdot \theta}}=\frac{|z|}{|w|} \cdot e^{j \cdot \varphi} \cdot e^{-j \cdot \theta}=\frac{|z|}{|w|} \cdot[\cos (\varphi-\theta)+j \cdot \sin (\varphi-\theta)]
$$

Polar representation

- Euler's formula

$$
\begin{aligned}
& e^{j \cdot x}=\cos x+j \cdot \sin x ; \forall x \in R \\
& e^{j \cdot x}+e^{-j \cdot x}=\cos x+j \cdot \sin x+\cos (-x)+j \cdot \sin (-x) \\
& e^{j \cdot x}+e^{-j \cdot x}=\cos x+j \cdot \sin x+\cos x-j \cdot \sin x=2 \cdot \cos x \\
& \quad \cos x=\frac{e^{j \cdot x}+e^{-j \cdot x}}{2} \\
& e^{j \cdot x}-e^{-j \cdot x}=\cos x+j \cdot \sin x-\cos (-x)-j \cdot \sin (-x) \\
& e^{j \cdot x}-e^{-j \cdot x}=\cos x+j \cdot \sin x-\cos x+j \cdot \sin x=2 j \cdot \sin x \\
& \quad \sin x=\frac{e^{j \cdot x}-e^{-j \cdot x}}{2 j}
\end{aligned}
$$

The lossless line

The lossless line

the input impedance seen looking toward the load

$$
Z_{i n}=Z_{0} \cdot \frac{Z_{L}+j \cdot Z_{0} \cdot \tan \beta \cdot l}{Z_{0}+j \cdot Z_{L} \cdot \tan \beta \cdot l}
$$

The lossless line

- input impedance of a length \boldsymbol{l} of transmission line with characteristic impedance \boldsymbol{Z}_{0}, loaded with an arbitrary impedance \boldsymbol{Z}_{L}

The lossless line

- input impedance is frequency dependent through $\beta \cdot l$

The lossless line, special cases

$\begin{array}{lll}l=\mathrm{k} \cdot \lambda / 2 \quad \beta \cdot l=\frac{2 \pi}{\lambda} \cdot l=k \cdot \pi & \tan \beta \cdot l=0 \\ l=\lambda / 4+\mathrm{k} \cdot \lambda / 2 \quad \beta \cdot l=\frac{\pi}{2}+k \cdot \pi & \tan \beta \cdot l \rightarrow \infty\end{array}$

$$
Z_{i n}=Z_{L}
$$

$$
Z_{i n}=\frac{Z_{0}^{2}}{Z_{L}}
$$

quarter-wave transformer
$Z_{i n}=Z_{0} \cdot \frac{Z_{L}+j \cdot Z_{0} \cdot \tan \beta \cdot l}{Z_{0}+j \cdot Z_{L} \cdot \tan \beta \cdot l}$

Short-circuited transmission line

- $Z_{L}=0$
- input purely imaginary for any length $/$
- + /- \rightarrow depending on / value

$$
Z_{i n}=j \cdot Z_{0} \cdot \tan \beta \cdot l
$$

(a)

(b)

(c)

Open-circuited transmission line

- $Z_{L}=\infty \rightarrow 1 / Z_{L}=0$
- input purely imaginary for any length l
- $+/-\rightarrow$ depending on I value

$$
Z_{i n}=-j \cdot Z_{0} \cdot \cot \beta \cdot l
$$

$$
Z_{i n}=Z_{0} \cdot \frac{Z_{L}+j \cdot Z_{0} \cdot \tan (\beta \cdot l)}{Z_{0}+j \cdot Z_{L} \cdot \tan (\beta \cdot l)}
$$

(b)

(c)

Examples

Examples

Examples

Examples

Examples

Voltage standing wave ratio

$V(z)=V_{0}^{+} \cdot\left(e^{-j \cdot \beta \cdot z}+\Gamma \cdot e^{j \cdot \beta \cdot z}\right) \quad|V(z)|=\left|V_{0}^{+}\right| \cdot\left|e^{-j \cdot \beta \cdot z}\right| \cdot\left|1+\Gamma \cdot e^{2 j \cdot \beta \cdot z}\right| \quad \Gamma=|\Gamma| \cdot e^{j \theta}$
$|V(z)|=\left|V_{0}^{+}\right| \cdot\left|1+|\Gamma| \cdot e^{\theta+2 j \cdot \beta \cdot z}\right|$
maximum magnitude value for $e^{\theta+2 j \cdot \beta \cdot z}=1 \quad V_{\max }=\left|V_{0}^{+}\right| \cdot(1+|\Gamma|)$
minimum magnitude value for $e^{\theta+2 j \cdot \beta \cdot z}=-1 \quad V_{\text {min }}=\left|V_{0}^{+}\right| \cdot(1-|\Gamma|)$

- SWR is defined as the ratio between maximum and minimum
- (Voltage) Standing Wave Ratio

$$
V S W R=\frac{V_{\max }}{V_{\min }}=\frac{1+|\Gamma|}{1-|\Gamma|}
$$

- real number $1 \leq V S W R<\infty$
- a measure of the mismatch (SWR = 1 means a matched line)

The lossless line +/-

$$
Z_{i n}=Z_{0} \cdot \frac{Z_{L}+j \cdot Z_{0} \cdot \tan \beta \cdot l}{Z_{0}+j \cdot Z_{L} \cdot \tan \beta \cdot l}
$$

$$
V(z)=V_{0}^{+} e^{-\gamma \cdot z}+V_{0}^{-} e^{\gamma \cdot z}
$$

$$
I(z)=I_{0}^{+} e^{-\gamma \cdot z}+I_{0}^{-} e^{\gamma \cdot z}
$$

$$
\Gamma(-l)=\Gamma(0) \cdot e^{-2 j \cdot \beta \cdot l}
$$

$$
\Gamma_{i n}=\Gamma_{L} \cdot e^{-2 j \cdot \beta \cdot l}
$$

Power transfer
Impedance Matching

Course Topics

- Transmission lines
- Impedance matching and tuning
- Directional couplers
- Power dividers
- Microwave amplifier design
- Microwave filters
-Oscillators and mixers-?

Matching

- Source matched to load ?

Matching, real impedances

- Source matched to load

$$
\begin{aligned}
& I=\frac{E_{i}}{R_{i}+R_{L}} \\
& V=\frac{E_{i} \cdot R_{L}}{R_{i}+R_{L}} \\
& P_{L}=R_{L} \cdot I^{2} \\
& P_{L}=\frac{R_{L} \cdot E_{i}^{2}}{\left(R_{i}+R_{L}\right)^{2}}
\end{aligned}
$$

Matching, real impedances

$$
P_{L}=R_{L} \cdot I^{2} \quad P_{L}=\frac{R_{L} \cdot E_{i}^{2}}{\left(R_{i}+R_{L}\right)^{2}}
$$

Power dissipated on load

- $\mathrm{R}_{\mathrm{i}}=50 \Omega$
- $R_{L}=0 \rightarrow P_{L}=0$
- $\mathrm{R}_{\mathrm{L}}=\infty \rightarrow \mathrm{P}_{\mathrm{L}}=0$

Matching, real impedances

Matching, complex impedances

- Source matched to load

$$
\begin{gathered}
I=\frac{E_{i}}{Z_{i}+Z_{L}} \\
V=\frac{E_{i} \cdot Z_{L}}{Z_{i}+Z_{L}} \\
P_{L}=\operatorname{Re}\left\{Z_{L} \cdot|I|^{2}\right\} \\
P_{L}=\operatorname{Re}\left\{Z_{L}\right\} \cdot\left|\frac{E_{i}}{Z_{i}+Z_{L}}\right|^{2}
\end{gathered}
$$

Matching

$$
\begin{gathered}
P_{L}=\frac{R_{L} \cdot\left|E_{i}\right|^{2}}{\left|Z_{i}+Z_{L}\right|^{2}}=\frac{R_{L} \cdot\left|E_{i}\right|^{2}}{\left|\left(R_{i}+R_{L}\right)+j \cdot\left(X_{i}+X_{L}\right)\right|^{2}} \\
|a+j \cdot b|=\sqrt{a^{2}+b^{2}} \\
P_{L}=\frac{R_{L} \cdot\left|E_{i}\right|^{2}}{\left(R_{i}+R_{L}\right)^{2}+\left(X_{i}+X_{L}\right)^{2}}
\end{gathered}
$$

Matching
" maximum power transmitted to the load

- condition?

Matching, example

- $\mathrm{E}=10 \mathrm{~V}$
- $Z_{i}=50 \Omega+j \cdot 50 \Omega$
- $P_{L}\left(Z_{L}\right)$?

$$
P_{L}=\frac{R_{L} \cdot\left|E_{i}\right|^{2}}{\left(R_{i}+R_{L}\right)^{2}+\left(X_{i}+X_{L}\right)^{2}}
$$

Matching, example

Matching, example

Matching , from the point of view of power transmission

$$
\begin{array}{ll}
R_{i}>0, R_{L}>0 & P_{L}=\frac{\left|E_{i}\right|^{2}}{4 R_{i}+\frac{\left(R_{i}-R_{L}\right)^{2}}{R_{L}}+\frac{\left(X_{i}+X_{L}\right)^{2}}{R_{L}}} \\
P_{L \max }=\frac{\left|E_{i}\right|^{2}}{4 R_{i}} \equiv P_{a} & R_{L}=R_{i}, X_{L}=-X_{i}
\end{array}
$$

- $P_{\text {Lmax }}=P_{a}$: Available Power

$$
Z_{L}=Z_{i}^{*}
$$

Reflection coefficient

- Any impedance Z_{o} chosen as reference

$$
\Gamma=\frac{Z-Z_{0}^{*}}{Z+Z_{0}}
$$

Matching, from the point of view of power transmission

$$
\begin{aligned}
\Gamma_{i} & =\frac{Z_{i}-Z_{0}^{*}}{Z_{i}+Z_{0}} \\
\Gamma_{i} & =\frac{\left(R_{i}-R_{0}\right)+j \cdot\left(X_{i}+X_{0}\right)}{\left(R_{i}+R_{0}\right)+j \cdot\left(X_{i}+X_{0}\right)} \\
Z_{\mathrm{L}} \quad \Gamma_{L} & =\frac{Z_{L}-Z_{0}^{*}}{Z_{L}+Z_{0}} \\
\Gamma_{L} & =\frac{\left(R_{L}-R_{0}\right)+j \cdot\left(X_{L}+X_{0}\right)}{\left(R_{L}+R_{0}\right)+j \cdot\left(X_{L}+X_{0}\right)}
\end{aligned}
$$

Matching, from the point of view of power transmission

$$
\begin{gathered}
\Gamma_{i}=\frac{Z_{i}-Z_{0}^{*}}{Z_{i}+Z_{0}}=1-\frac{Z_{0}+Z_{0}^{*}}{Z_{i}+Z_{0}} \\
\Gamma_{L}=\frac{Z_{L}-Z_{0}^{*}}{Z_{L}+Z_{0}}=1-\frac{Z_{0}+Z_{0}^{*}}{Z_{L}+Z_{0}} \\
\Gamma_{i}^{*}=1-\frac{Z_{0}^{*}+Z_{0}}{Z_{i}^{*}+Z_{0}^{*}}=1-\frac{Z_{0}^{*}+Z_{0}}{Z_{L}+Z_{0}^{*}}
\end{gathered}
$$

Matching, from the point of view of power transmission

If we choose a (any) real Zo
$Z_{L}=Z_{i}^{*}$

$$
\Gamma=\frac{Z-Z_{0}}{Z+Z_{0}}
$$

$$
\Gamma_{L}=\Gamma_{i}^{*}
$$

- complex numbers
- in the complex plane

Laboratory 1 Impedance Matching

The quarter-wave transformer

Binomial multisection transformer

SRA	S-PARAMETERS
S_Param	
SP1	
Start $=0.5 \mathrm{GHz}$	
Stop $=5.5 \mathrm{GHz}$	
Step $=0.001 \mathrm{GHz}$	

Chebyshev multisection transformer

Contact

- Microwave and Optoelectronics Laboratory
- http://rf-opto.etti.tuiasi.ro
- rdamian@etti.tuiasi.ro

